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resembles very much that of E. coli (Ueki, Tanaka, 
Nakae & Nikaido, 1979), the agreement of the results 
from X-ray and electron microscopy indicates that the 
interpretation of Ao(u) is correct. The model construc- 
tion of the protein assembly from Ao(u ) with threefold 
rotational symmetry was carried out and we have 
obtained a reasonable model structure of the assembly 
(Ueki, Tanaka & Nakae, 1979). 

For the equatorial diffraction from chromatophore 
of Rhodospirillum rubrum, the method using the radial 
autocorrelation function was applied. Although we 
have reported that equatorial reflections could be 
indexed as a two-dimensional hexagonal lattice with 
a = 42.6 A (Ueki, Kataoka & Mitsui, 1976), the radial 
autocorrelation function suggests that the protein 
assembly is not crystalline but has rotational sym- 
metry. Details will be published elsewhere (Kataoka & 
Ueki, 1979). 
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Abstract 

A general problem of the computer simulation of X-ray 
traverse topographs is treated on the basis of the 
Green-function method. Special attention is paid to the 
role of partial coherence of the incident radiation and to 
the problem of accounting for it in the practical 
calculations. The reciprocity theorem for the Green 
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functions is proved rigorously in the X-ray diffraction 
optics and is applied to solve the problem in question. 
Different approaches based on the solution of the 
boundary problem of the Cauchy type and on the 
Green-function method are analysed and are compared 
from the view point of the computation time needed 
and of their adaptation capability to real experimental 
conditions. It is shown that, in the present case of a 
small correlation length in the primary beam, the Green 
function method has very significant advantages, which 
make it the only one acceptable for practical computer 
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simulations. As examples, the diffracted intensity 
profiles of some dislocation images are computed with 
this method. These profiles demonstrate good corre- 
spondence with the experimental ones as well as the 
possibility of the determination of the Burgers vector 
sign from the pairs of profiles measured with opposite 
directions of the diffraction vector. 

1. Introduction 

Amongst the methods of the X-ray topography of 
single crystals, X-ray traverse topography (XTT) is the 
most widespread so far, since information about the 
defect distribution in a large volume of a crystal may be 
obtained in a relatively short time (Lang, 1959). From 
the type of diffraction image, it is also possible to deter- 
mine what kind of defect is visible - dislocation, dis- 
location loop, stacking fault, etc. Furthermore, the 
shape and location of the direct (projection) image 
yields some geometrical information about a defect. In 
particular, the geometrical parameters of the straight- 
line dislocation cutting both the crystal faces may be 
easily reconstructed (Authier, 1967). In the case when 
a defect lies in the bulk of a crystal its depth beneath 
the surface is estimated approximately from the image 
width and some features of the contrast details. More 
particular information (the Burgers vector direction, for 
example) is available from a number of the topographs, 
taken for different reflections at the same time, 
although the sign of the Burgers vector remains 
uncertain. 

Thus, up to now XTT is still not capable of yielding 
the total information about single defects. A decisive 
improvement, in principle, in this field could be 
achieved by the use of quantitative methods of image 
study. As regards X-ray section topography (XST; 
Kato & Lang, 1959), such an approach has been 
known for more than ten years (Balibar & Authier, 
1967; Epelboin, 1974). The XST image of any chosen 
defect is numerically simulated rather easily, so that a 
quantitative comparison of the experimental image with 
the computed one is available in order to check the 
defect model and to determine all the parameters of the 
defect involved. For this reason, XST is often used 
when complete defect data are needed. However, it 
should be kept in mind that because of a small 
illuminated volume and very long exposure time XST is 
as yet no good in practice for the investigation of single 
crystals with large volume. 

It is obvious that computer-technique development 
for XTT image simulation would lead to a better 
understanding of the formation of the diffracted images 
themselves and to a significant increase in the amount 
of information received from XTT. However, such a 
problem is much more complicated in comparison with 
the simulation of XST or double-crystal topographs. 

The main difficulty is the space and time incoherence of 
the incident radiation as well as the large dimensions of 
the illuminated crystal area. The computer simulation 
of defect images in the approximation of an X-ray 
monochromatic plane wave falling on a crystal surface 
does not explain the XTT experiments (Chukhovskii & 
Shtolberg, 1970, 1973). A true picture could be 
obtained by averaging the diffracted image over the set 
of plane waves or representing the incident X-ray 
bundle by a number of mutually independent point 
sources on the entrance surface of a crystal (it will be 
shown below that these two methods are the particular 
cases of a more general approach). These approaches 
are not efficient for practical purposes because of the 
long computer time needed and the low accuracy of 
calculations, as was shown by Epelboin (1977). 

Up to now, the only computer simulations of XTT 
images have been carried out for the case of a stacking 
fault in a crystal when the greater part of the 
calculation is feasible in an analytical form 
(Wonciewicz & Patel, 1975, 1976). Wonciewicz & 
Patel obtained an interesting result, namely that the 
behaviour of the interference fringes on the XTT fault 
image differs from that on the XST image; in par- 
ticular, the sign of the first fringe from the exit surface 
may be either the same as on the XST pattern or 
reversed depending on the diffraction conditions and 
the defect geometry. This example shows that the 
contrast formation, in general, is different for these two 
topographic methods and the XTT images should be 
studied separately. Such studies are clearly impossible 
without appropriate methods and systematic computer 
simulations. 

The computer simulation problem of XTT consists 
of two major points: the first is a general physical treat- 
ment of the problem and the choice of a rational 
scheme of calculation; the second is the development of 
a suitable numerical method. The present paper deals 
mainly with the first point. An effective numerical 
method for the problem has been proposed by one of 
the authors (Petrashen', 1976). A new approach to the 
problem is based on the Green-function formulation of 
the X-ray diffraction theory (§§2, 3) and the 
reciprocity theorem which is proved rigorously in § 4. 
In §§ 5 and 6, practical possibilities of the method are 
discussed and are illustrated by some computer- 
simulated images. In some cases, the sign of the 
Burgers vector of the dislocation is shown to be found 
from the XTT images only. 

2. The Green functions 

Let a monochromatic X-ray bundle with the main wave 
vector K 0 and infinitesimal lateral dimensions fall on a 
crystal surface. If the wave vector K 0 satisfies the Bragg 
condition for the crystal net plane with reciprocal- 
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lattice vector h, the coherent superposition of the trans- 
mitted wave with wave vector close to K 0 and the 
diffracted wave with wave vector close to Kh = Ko + h, 
will occur inside the crystal. Taking the directions K 0 
and K h as the axes of the oblique-angled coordinate 
system (s o O Sh), one can write the incident bundle in 
the form 

~(oVaC)(So,Sh) = ¢~(Sh- ~h) exp(iKoso)  (2.1) 

and the wave field ~'(So,Sh) inside the crystal is deter- 
mined by 

~" (So,Sh) = 600(So,Sh,~O,~h) exp (iK o So) 
a t- 6ho(So,Sh,~O,~h) exp(iKhSh).  (2.2) 

Here and below (So,Sh) and (~0,~h) denote the 
coordinates in the same single coordinate system used 
throughout this paper. Different symbols are used only 
to distinguish between the coordinates of the source 
location and of the observation point. For the standard 
diffraction geometry in (2.1) and (2.2), we use (so,s h) 
for the observation point and (~,~h) for the coordinates 
of the incident bundle on the entrance surface of the 
crystal and vice versa when considering the reciprocal 
diffraction geometry in § 4 (Fig. la,b). The amplitudes 
600 and 6h0 in (2.2) are the Green functions of the 
dynamical-diffraction problem by definition. Inside a 
crystal the wave field propagates between the directions 
of the transmitted and diffracted waves (the Borrmann 
fan) and, hence, the Green functions are equal to zero 
outside this region, i.e. 

600 = 6h0 = 0, when s o < ~0 or s h < ~h" (2.3) 

The representation (2.2) is analogous to the usual 
one of the diffraction theory in distorted crystals 
(Takagi, 1962, 1969) in the case of an incident wave of 
a particular kind (2.1). It is important that, owing to a 
small value of the crystal polarizability x(r), the Green 
functions 600 and 6no vary slowly at distances of the 
order of the X-ray wavelength. A characteristic 
alternation length of the Green functions with the depth 
inside a crystal is the extinction length 

2rt( YoYh i'/2 
A =K00 , ~ ,  Z--~-h ] ~- 105 2, (2.4) 

where 2~h is the Fourier component of)c(r), Y0 and Yh are 
the cosines of the angles formed by the vectors K o and 
K h with the surface normal. 

3. The diffracted intensity on XTT 

In a general case, the incident X-ray wave has the form 

g'~oVaC)(so,sh)= ~o(Sh) exp(iKoso). (3.1) 

Due to the linearity of dynamical diffraction 
equations, the wave-field amplitudes inside a crystal 

can be taken as the convolutions of the Green functions 
and the amplitude g0(Sn) (the Huygens-Fresnel prin- 
ciple): 

~o(So'Sh) = ~ 600(S0'Sh'~0'~h) ~0(~h)d~h' (3.2) 

~'h(So,Sh) : ~ 6ho(So,Sh,~O,~h) ~'O(~h) d~h; 

with the integration going over the intersection line of 
the scattering plane with the entrance surface 

~0 = (,0(~h) (3.3) 

and the diffracted intensity 

Ih(So,Sh ) = I~'h(So,Sh) 12 

= ~ ~ 6hotSo,Sh,~O(~h),~h] 

X 6~0[S0, Sh, ~O(~h + S), ~h + S] 

X o~'0(~h ) ~t (~h  + s) d~h ds. (3.4) 

Here and below the variable s is the difference between 
two ~h coordinates corresponding to two points on the 
entrance surface. 

Now we will consider the characteristic features of 
XTT. In the XTT method, a homogeneous illumination 
of the crystal surface is achieved by scanning the 
crystal with a photographic plate across the primary 
beam (Lang, 1959). Because of this, the intensity (3.4) 
should be averaged with the observation time or, 
equivalently, with the positions of the X-ray point 
source. As a result, the product ~q~0(~h)~a~(~h + S) 
should be substituted by its average value 

(g'0(~n) g'~(djn + s ) ) =  Io(~ h + s/2)F(s), (3.5) 

where Io(~h) is the intensity distribution of the incident 
bundle, F(s) is an autocorrelation function. The 
formula (3.5) holds for the stationary illumination 
condition and is valid when the intensity I 0 varies 
slowly with the correlation length Sco r of the incident 
bundle. 

The intensity I h should also be averaged with the 
wavelength of the radiation used. The latter is usually 
the characteristic X-ray line of spectral width A2/2 ~_ 
10-3-10 -4 , so that the dependence of the Green 
functions on the wavelength can be neglected if the 
crystal thickness T is sufficiently small: 

T <  A / ( - ~ ) =  A/(A-~)~_(IO3-IO4)A. (3.6) 

[An inverse proportionality between the extinction 
length A and 2 is taken into account in (3.6); see, for 
example, Pinsker, 1974.] In practice, (3.6) is always 
fulfilled. 

Thus, only the autocorrelation function F(s) should 
be averaged with the wavelength, which leads to some 
decrease of the correlation length. 
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From (3.5), the diffracted intensity takes the form 

Ih(So, Sh) = ~ d~hIhotSo,Sh,~(~h),~ h] Io(~h), (3.7) 

where Iho is the correlative Green function 

Iho [ So,S h,~O ( ~h),~h ] 

= ~ 6~0180' Sh' ~O(~h + S/2),  ~h + S/21 

)< 6hO[SO'Sh ' ~O(~h -- S/2)'~h -- S/2 ] F(s )  ds. 
(3.8) 

As an example, let us consider the case when the 
plane crystal is illuminated with an incoherent super- 
position of the plane waves with wave vectors in the 
range of lengths (K 0 - AK/2, K o + AK/2) and with 
angular spread AO. Let (p be the angle between the wave 
vector and the normal to the surface. Then, for a single 
plane-wave component, one has 

$'O(~h) ~*(~h + S)= exp[(K sin ~p-- K 0 sin ¢Po) 

, x s sin 20B/~'o]. 

In order to obtain the expression for F(s) in an 
explicit form, one has to average the expression above 
with respect to K and ~p. Assuming AO .~ 1, A K / K  < 1 
and putting 0 = ~p - ~P0, k = K - K 0, one finds 
immediately that the correlation function is given by 

A 8/2 if  F(s) = ~ d0 exp (iKo sin 20B sO) 

-AO/2 
AN~2 i f  x - -  dk exp (ik sin 20B s tan q~o) 

AK 
- ,~ /2  

= 2  
sin (K o sin 20 s sAO/2) 

K 0 sin 20~ sAO 

sin (AK sin 20B s tan ~P0/2) 
x 2 (3.9) 

AK sin 20~ s tan ~P0 

and has the form of the product of two factors, the first 
one depending only on the angular width of the incident 
bundle and the second one on the spectral width. With 
increase in AO or AK, the correlation function tends to a 

function neglecting a normalization factor. Usually, 
in the XTT experiment AO ~ 10-3-10 -4, A K / K  o ~_ 
10 -3, 2 - 10 -~° m, and for both factors the correlation 
length is of the order of 10 -6 m. In practice, the smaller 
of the two correlation lengths should be utilized to 
characterize the coherent properties of the bundle. 
Often, it is more convenient to deal with the correlation 
length Xco r along the entrance surface. The relation 
between Xco r and Scor is evident: 

Xco r = Scor sin 20B/yo. (3.10) 

Any incident bundle can, in principle, be expanded in 
plane waves so that the above estimates are of general 
importance. 

4. The  reciprocity theorem 

In light optics, the reciprocity theorem declares the 
following: a point source of unit strength located at a 
point r~ causes such an amplitude of the electro- 
magnetic field at a point r 2 as would be created at r I by 
the same source located at rE (Laue, 1935, 1960). A 
specific application of this statement in X-ray diffrac- 
tion physics is that a wave field consists of separate 
components propagating in different directions and the 
amplitudes of these separate components must be 
known. 

Kato (1968) pointed out that when the source and 
the observation points are sufficiently far from a 
crystal, the transmitted and diffracted waves are 
separate in space so that the reciprocity theorem may 
be applied to the diffracted wave only. The mutual 
permutation of the source and the observation points 
corresponds to the transition from standard to 
reciprocal diffraction geometry (Fig. 1). Considering 
the image on XTT as formed by scanning of a crystal 
with respect to an incident spherical wave of infinitesi- 
mal radius, Kato obtained from the reciprocity theorem 
that the intensity at a point rp on XTT is equal to the 
integrated intensity of XST taken in the reciprocal 
geometry with a point source placed at rp. 

The case of the spherical wave with an infinitesimal 
radius corresponds to a zero correlation length of the 
incident bundle. However, the more general case of 
partially coherent incident radiation is quite realistic. 
The consideration below enables one to estimate the 
accuracy of Kato's (1968)spherical-wave theory and 
to propose a more general approach. We shall prove 
the reciprocity theorem in the form of the relation 
between the Green functions for the standard and 
reciprocal diffraction geometries. 

In order to derive this, let us introduce the Green 
functions 600 and 6hO as the solutions of the inhomo- 
geneous Takagi equations with an X-ray point source: 

i - -  600 + ~1o 600 + e-h exp (ihu) 6h0 
C3S 0 

= i ¢~(S 0 -- ~0) ¢~(Sh-  ~h)' 
(4.1) 

i ~ 6h0 + r]h 6h0 + (7 h exp  (--ihu) 600 = 0, 
cos h 

provided that they satisfy conditions (2.3). 
In (4.1), u(r) is the displacement vector of the elastic 

field, e+ h are the normalized dynamical coefficients, r/O.h 
are the geometrical factors (for notation see 
Chukhovskii & Petrashen', 1977). It is easily seen that 
the solutions of (4.1) and (2.3) satisfy the continuity 
conditions at the entrance surface Sen t . Indeed, Sen t lies 
in the regions either s o < ~0 or s h < ~h and, owing to 
(2.3), 

6h0lse.t  = 0. (4.2) 
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Then, integrating the first equation (4.1) from ~0 - e 
to ~0 + e and allowing e to tend to zero, one finds that 
just under the entrance surface 

~00lSent = ~ ( S h -  ~h)' (4.3) 

which, with (2.2), is in accordance with the incident 
bundle (2.1). 

In the reciprocal geometry, the incident beam 
propagates along the axis Os h in a backward direction 
as does the diffracted beam along the axis Os 0, whereas 
the diffraction vector h remains the same. Thus, the 
Green functions Coo and Ch0 for the reciprocal 
geometry satisfy the equations 

- i  c---~h Coo + rlh COO + 0--h exp (ihu) ~hO 

: d ~(~h -- Sh) (~(~0- SO), (4.4) 

- -  = --i ~ o  ~hO + rio ~hO + 0-h exp (--ihu) Coo 0. 

Here, the entrance point is denoted as (So,Sh) and the 
coordinates of an observation point as (~0,~h). As a 
consequence, the Green functions Coo and Cho are 
defined within the same region (2.3) as the Green 
functions 600 and ~h0. 

By means of the substitutions 

~l j  = exp [ir/o(S 0 - -  ~o) + i~h(Sh - -  ~h)] GU, (4.5) 

the hyperbolic equations for the functions Gho and GhO 
are readily obtained: 

_ _  Gh ° + 0-2 eihu Gh ° 
~So ~gSh 

= i0-h ~(So - -  ~o) (~(Sh - -  ~h), (4.6) 

~ (e~u ~ ~hO) +0-2e'~U~ho 

= i0-h (~(So -- ~0) (~(Sh -- ~h), (4.7) 

where 0 -2 = O" h o--h" 
The integration of (4.6) from (,o - e to s o and further 

from ~ h  - -  e to S h taking (2.3) into account turns (4.6) 

(a) (b )  

Fig. 1. Standard (a) and reciprocal (b) diffraction geometries. 

into the corresponding Volterra's integral equation of 
the second kind 

Sh $0 

Gho + ff 2 f e -'~" f eihU Gho dSPo ds~ 
Ih--E ~o--~ 

: iah e-'l'" O(so - -  ~o) O(Sh - -  ~h)" (4.8) 

In order to derive an equation of the type (4.7), it is 
necessary to differentiate (4.8) with respect to ~0, ~h" 
Introducing the notation 

F =  exp[ihu(~,~h)l - - ~  aho , (4.9) 

and taking into account (2.3), one finds 

$h SO 

F +  a 2 f e -'~u f e'~" F ds'o ds'h 
Ih -- E to- E 

= iah ~ ( S o -  (,o) CS(Sh -- ~h)" (4.10) 

From (4.10), it follows immediately that the com- 
bination 

a -2  exp [--ihu(~0,~h)] [i0-h ~ ( S o -  ~0) ~(Sh -- ~h) -- F] 

satisfies the same equation (4.8) as for Gh0 SO that these 
functions are equal to each other 

/ 

exp [--/ 'hu(~,~h)] (i0-h (~(So- ~0) ~(Sh -- ~h) 0--2 
\ 

0~h exp[ihu(~,~h)]-~o Gho = aho. (4.11) 

Equation (4.1 1) is equivalent to (4.7) for Gh0 and, 
keeping in mind (4.5), one has 

~hO(So, Sh,~O,~h) : ChO(~O,~h,So, Sh). (4.12) 

The relation (4.12) represents the reciprocity 
theorem which we require to prove. Equation (4.12), 
however, enables us now to interpret the Green 
function ~h0 as a solution of the diffraction problem for 
reciprocal geometry. It is interesting that in the case of 
zero correlation lengths, scor = 0, the correlative Green 
function [see (3.8)] is given by 

Ih0 = ICho 12 (4.13) 

and has the sense of the intensity distribution in XST, 
also in a reciprocal geometry. Assuming lo(~h ) = 
constant in (3.7), one obtains Kato's (1968) theorem 
for the intensity in XTT. In the general case of non- 
vanishing correlation length for the correlative Green 
function, one gets 

oo 

Iho = J" [ C h 0 [ ~ 0 ( ~ h  + 8/2),  ~h + S/2, So, Sh ][2 F ( s )  ds  
-oo oo 

--½ f ICh0[~0(~ h + s/2), ~h + S/2, So, Sh] 
--CO 

- -  Ch0[~0(~h- s/2), ~ h -  s/2, s o, Sh][ 2 F(s) ds, 
(4.14) 
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taking into account the parity of the autocorrelation 
function F(s). 

Let  $cor be small; then the integrated intensity can be 
written as 

Ih($O'$h) = $cor f I~h012 d~h -½~  5 ~ [ ~h0(~h  + S/2) 
-- ~hO(~h -- S/2) 12 F(S) ds d~h 

'~ Scor[~ I~h0 [2 d~h 
-- 0(½ ~ Id~ho/d~hl d~h) Sc2or/24], (4.15) 

where the complete de r iva t i ve  d~ho/d~h is taken along 
the entrance surface. 

The second term on the right-hand side of (4.15) 
causes a decrease of the integrated intensity compared 
with Kato's result. The origin of this decrease becomes 
clear if one remembers that the non-zero correlation 
length is due to the finite angular spread of the incident 
beam, as was shown in § 3, whereas in Kato's theory 
this spread is infinite. The absolute value of the 
correction depends essentially on the rate of change of 
~h0 on Sen t. For a perfect crystal of thickness T, the 
oscillation period of ~h0 decreases at the edges of the 
Borrmann fan down to a value of the order of A2/T, so 
that a noticeable change of I h is possible when S¢o r _ 
0.1A. Since for any distorted crystal the period of the 
Pendellfsung fringes decreases (in comparison with a 
perfect crystal), the above correction of the integrated 
intensity increases. This effect leads to a reduction in 
the direct image contrast of a defect with increasing 
correlation length. 

5. A comparative analysis of the XTT computer 
simulation 

The formulae (3.7) and (3.8), the reciprocity theorem 
proven above and the numerical calculation of the 
Green function constitute the methodical basis of the 
problem. 

Before going on to consider the XTT computer 
simulations of the dislocation image in detail, we shall 
discuss a different method not utilizing the reciprocity 
theorem, namely Cauchy's problem solution in the 
framework of the Takagi equations (Taupin, 1964; 
Authier, Malgrange & Tournarie, 1968) for incident 
plane waves and the subsequent averaging of the 
diffracted intensity by them (Epelboin, 1977). 

It is shown below that the preference for one or other 
method depends on the relation between the correlation 
length and the necessary resolution on the simulated 
XTT. 

The calculations based on the expansion of the 
incident bundle in a set of plane waves or a set of point 
sources may be considered as the particular cases of a 
more general method. In order to formulate it we shall 
assume that for numerical calculations a discrete 
network with triangular cells is used (Fig. 2, Takagi, 

1962; Taupin, 1964). The size of the calculation step A, 
depends mainly on the accuracy of the numerical 
method chosen. Let the lateral dimension of the 
illuminated area of a crystal be ( N - 1 )  calculation 
steps. Then, the boundary conditions of the Cauchy 
problem are given at N nodes of the net on the entrance 
surface. The size of the illuminated area is equal to 
( N - 1 ) A ,  = A + Z ,  where A is the width of the 
simulated XTT and Z is the crystal thickness (both 
quantities are measured along Os h, as shown in Fig. 2). 

Let the Cauchy problem be solved M times for M 
various distributions of the amplitudes and phases on 
the entrance surface. Any such distribution will be 
denoted by a vector E (m) = {E~n m)} in the complex N- 
dimensional space. Every calculation gives an intensity 
distribution I~ m) on the exit surface. From this, the 
average intensity distribution is given by 

M 
I n = M - '  Y I~ m). (5.1) 

m=l 

The only condition for the vectors E (m) is that the 
autocorrelation function 

M M 
F(i--j) = 2 Z El m) EJm)*/ ~. (IE! m)Iz + IE} m)Iz) (5.2) 

m=l m=l  

should correspond to the correlation length Seo r. In all 
other respects, values of E~, m) are arbitrary. In such an 
approach, the correlation length Seor cannot be made 
smaller than A 1. At the limit of Sco r = A,, all the 
correlators F(i - j )  with i 4: j must be zero and, hence, 
the matrix E~ m) must consist of columns orthogonal to 
each other, which is possible if M > N. In the simplest 
case of M = N, E~, m) = ~m,,, which corresponds to a set 
of point sources. 

In a more general case, when Scor _> A,, the minimum 
value of M is defined as 

M > (A,/seor) N ~_ (A + Z)/S¢o r. (5.3) 

This procedure may be improved by taking into 
account the fact that waves emitted from two points on 
the entrance surface at a distance greater than Z from 
each other do not interfere so that the correlators 
F ( i - - j )  for l i - j l  > g~ = Z/A ,  have no influence on 

Fig. 2. A discrete network for the solution of the Cauchy problem. 
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the results and are non-essential being non-zero. There- 
fore, the minimum value of M is 

M > (AJsco,) N Z ~_ Z/sco r. (5.4) 

In order to estimate the computer time needed, we 
shall assume that it is proportional to the number of net 
nodes multiplied by M; 

Z(A  + Z/2)  (A + Z/2)  Z 2 
L 1 = M ~ (5.5) 

S c o ,  

In the method proposed on the basis of the 
reciprocity theorem, every one of the Green functions 
for the reciprocal geometry is calculated in a triangular 
area (the Borrmann fan) containing the net nodes 

L~ = Z2/2A 2 (5.6) 

(A 2 is the calculation step size). 
The time needed for averaging (3.8) with a finite 

correlation length s,o r is proportional to ZScor/A 2 and is 
much less than Lo. The total computing time is defined 
as  

L z = AZZ/2A2a,  (5.7) 

where a is an average distance between the computing 
points on XTT. 

By use of (5.5), (5.7), the time ratio for the two 
methods involved is 

L,  2a (A + Z/2)  ( A212 
L2- A  5.8) 

Taking as the typical simulation values Sco r _ 10 -6 m, 
a -,~ 10 -5 m, A ~ Z, one finds L I / L  z ~ 30(A2/AI) z. The 
ratio A2/A ~ depends on several factors. The calculation 
of the Green functions can be carried out by means of a 
net with an alternating step size (Petrashen', 1976)and 
the comparable accuracy of a single integration is 
achieved when A 2 is at least twice as large as A v 
Furthermore, as a rule the correlation length scor is 
smaller than the step size d~ chosen for the numerical 
solution of the Cauchy problem (Authier, Malgrange & 
Tournarie, 1968; Epelboin, 1974). As a consequence, 
good agreement with the XTT experiment is impossible 
without some additional reduction of A~ beyond the 
requirements of the accuracy of the integration pro- 
cedure itself. Furthermore, in practice, the auto- 
correlation function F(s) should be some smooth 
function provided that the correlation length is compar- 
able with the minimum period of the Pendell6sung 
fringes, otherwise the simulation results may be 
unstable with respect to the changes of A~ or  Scor, as 
was shown by Epelboin (1977). The stability condition 
may be satisfied only ifA~ ,¢ Scor. 

Thus, the above treatment shows that for typical 
XTT experiment conditions, the numerical solution of 
the Cauchy problem requires a time a few hundred 
times greater than that needed in the case of the 

proposed method, based on the reciprocity theorem. 
This means several hundred hours on a middle-class 
computer, which is quite unrealistic. Nevertheless, the 
Cauchy method is so much the better when the 
correlation length is larger and is certainly the best one 
for double-crystal topography. 

6. The applications of the theory 

There are a few examples to provide illustrations of the 
theory applications (Petrashen' & Chukhovskii, 1978; 
Petrashen', Chukhovskii & Shulpina, 1978). We shall 
compare below the experimental and computed inten- 
sity profiles for dislocations parallel to the crystal 
surface. In Fig. 3(a), (b), two experimental XTT of a 
chosen area of a sin$1e crystal of Si are taken of the 
reflections 3,22 and 422 with Mo Ka radiation. For dis- 
locations parallel to the surface, changing the sign of 
the diffraction vector is equivalent to changing the sign 
of the Burgers vector b of the dislocation. So the pairs 
of XTT with opposite diffraction vectors h, --h are very 
convenient for investigating the dependence of the XTT 
images on the sign of a dislocation. Of the two dis- 
location images shown in Fig. 3(a), (b), one torte- 

. , 4  

(a) (b) 
Fig. 3. XTT of dislocations in 900 ~tm thick Si crystal, taken for 

3,22(a) and 422(b) reflections. 

~ J  
i I 

100 lain 
(a) (b) 

Fig. 4. Intensity profiles across the images of Fig. 3. (a) 3,22 
reflection. (b) 422 reflection. 
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sponds to a screw dislocation with I(h.b)l -- 3 
(stronger contrast) the other one (at 60 ° to the first) to 
a dislocation with I(h.b)l -- 1 (weaker contrast). The 
corresponding photometric profiles are shown in Fig. 4. 

The calculations (Fig. 5) have been performed on a 
middle-class computer (M-4030, the computation speed 
is about 105 op/s). The general principles of the 
numerical procedure have been given by Petrashen' 
(1976) and further details will be published elsewhere. 
To calculate the Green functions with the source at a 
point in the reciprocal geometry, the Borrmann fan is 
divided into integration cells forming a rhombic 
difference net (Fig. 6). In the middle of the net the step 
size is of the order of 0.1A, whereas towards the edges 
of the fan the step is reduced, which is very important 
for taking into account the rapid oscillations of the 
Green functions. At every step, the value of the Green 
function at the point D of the subsequent integration 
cell is calculated by use of previously calculated values 
at the points A, B, C (Fig. 6) in accordance with the 
difference formula 

20" 2 C 2 O 
F, ,  - f s  = ( F c  - -  FA)  e tw - -  ( F c e  lw + F~) ,  

1 + 0"2 C2..Q 

where ~hO and F are related through the normal 
absorption factor 

~h0 = F exp (--gt/2 cos On). 

C is the polarization factor, 4 0  is the area of the 
integration cell, o 2 = 1 + 2ix, x is the normalized 

I° 

~ J 

100 lain 
(a) (b) 

Fig. 5. Computed intensity profiles for the experimental conditions 
of the XT-I" of Fig. 3. (a) 422 reflection. (b) 422 reflection. 

Fig. 6. A discrete network for the calculation of the Green 
functions. 

dynamical absorption coefficient, w = h(uAc -- uso ) is 
proportional to the local deviation from the Bragg 
condition within the cell ABCD. The boundary con- 
ditions require the function F to be equal to 1 on the line 
~0 = So and exp {--ih[u(~o) - u(s0)] } on the line ~h = Sh" 
Two Green's functions for two polarizations are 
calculated in parallel. The computation time for any of 
the profiles in Fig. 5 was about 1 h. This shows the big 
improvement in time with the new method proposed (of. 
Epelboin, 1977). 

In all the four cases considered, a good agreement 
between the theoretical and experimental profiles is seen 
for the relative peaks of the intensities and the depths of 
the dynamical shadows. 

The fact of principal importance is that there is a 
very noticeable difference in the intensities of the direct 
images in the case of 60 ° dislocation with (h.b) = + 1. 
This enables one to determine the sign of the Burgers 
vector. For the screw dislocation with I(h.b)l = 3, the 
peak intensity is weakly dependent on the sign of (h. b). 
The physical reason for the phenomenon is that the two 
different scattering processes are responsible for the 
formation of the direct images (Petrashen' & 
Chukhovskii, 1978): the kinematical scattering due to 
the strong distortions close to the dislocation line is 
independent of the sign of a deformation, while the 
dynamical scattering prevails in the weakly distorted 
regions and is sensitive to the sign of the strain gradient 
due to the anomalous absorption effect. With increase 
of I(h.b) l, the diffracted intensity scattered 
kinematically increases rapidly and masks the sign- 
dependent dynamical contribution. The present experi- 
mental data confirm this statement. 

From the comparison of Figs. 4 and 5 it is seen that 
the depth of the dynamical shadow of the dislocation 
profiles may also be sensitive to the sign of the Burgers 
vector. The physical interpretation of this result is much 
more complicated and may be the subject of a separate 
study. 

The above considerations of the problem in question 
lead us to the conclusion that the computer simulation 
of XTT based on the theory proposed can be a 
powerful tool in current XTT experiments. 
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Abstract 

The situation normally encountered in the high-reso- 
lution refinement of protein structures is one in which 
the inaccurate positions of P out of a total of N atoms 
are known whereas those of the remaining atoms are 
unknown. Fourier maps with coefficients (F N -- F'e) x 
exp (ia' e) and (mF N -- nF' e) exp (ia'e), where F N is the 

t observed structure factor and F~, and a e are the 
magnitude and the phase angle of the calculated 
structure factor corresponding to the inaccurate atomic 
positions, are often used to correct the positions of the 
P atoms and to determine those of the Q unknown 
atoms. A general theoretical approach is presented to 
elucidate the effect of errors in the positions of the 
known atoms on the corrected positions of the known 
atoms and the positions of the unknown atoms derived 
from such maps. The theory also leads to the optimal 
choice of parameters used in the different syntheses. 
When the errors in the positions of the input atoms are 
systematic, their effects are not taken care of auto- 
matically by the syntheses. 

Introduction 

Fourier methods are extensively used at different stages 
of the high-resolution refinement of proteins to calcu- 
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late the shifts in structural parameters as well as to 
check the results obtained during the course of the 
refinement (Freer, Alden, Carter & Kraut, 1975; 
Watenpaugh, Sieker, Herriot & Jensen, 1973; Bode & 
Schwager, 1975; Dodson, Dodson, Hodgkin, Isaacs & 
Vijayan, 1978). The problems associated with these 
methods become more pronounced when they are 
applied to protein crystallography for several reasons. 
They often give rise to phenomena which cannot be 
anticipated or easily defined, and one can arrive at a 
crystallographically acceptable, but erroneous, refined 
structure (Dodson et al., 1978). Hence the need for a 
fresh theoretical look at Fourier methods. 

Modulus synthesis, phase synthesis and their 
convolution 

Fourier methods have been analysed by many workers 
(e.g. Luzzati, 1953; Ramachandran & Srinivasan, 
1970; Dodson & Vijayan, 1971). The formulation of 
Ramachandran & Srinivasan is used in the present 
analysis and the relevant results from their work are 
outlined in this section. 

If the structure consists of N atoms with positions rj 
and form factors f j  ( j  = 1, ..., N), a Fourier synthesis 
with the structure factors F exp (ia) as coefficients 
obviously has peaks at rj with strengths proportional to 
fj. if  the moduli of the structure factors are used as 
Fourier coefficients, Ramachandran & Srinivasan have 
shown, to a first approximation, that the resulting 
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